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The uncertainty relation associated with the measurements of a generic noncommutstive pair of observ-

ables (A, B) in a normalized state I_b) is usually expressed as

1
Z_A. Z_B _> _[ ('/'l [A, B] [¢')[. (1)

For a canonically conjugate pair, the position and momentum of a particle (X, P), this equation gives the

original Heisenberg uncertainty relation AX. AP _> _, (h = 1). On the other hand, if the commutator [A, B]

remains as a q-number, the r.h.s, depends on the state [_b) and can be made arbitrarily small. For example,
if [_b) is chosen as an eigenstate of A, then Eq.(1) becomes trivial and no information can be extracted on
AB. Thus this formulation of the uncertainty principle has no practical meanings in general.

To improve the situation, the information-theoretic formulation of the uncertainty principle has been

repeatedly studied in the recent literature. Deutsch [al and Partovi[al discussed that the sum of entropies,

U[A, B: ¢] = SA[_] + S810], (2)

has an irreducible lower bound independent of the choice of I_b). Here, the information entropy associated
with the measurement of A is defined by

SA[_] = -Sol(al'_)laln [(al'_)[', (a Ia) -- _ Is)), (3)

where S_ stands for the summation (integration) over the discrete (continuous) spectra. This is a quantity
dependent on the choice of the representation Is) in general and is not expressed as s quantum mechanical

expectation value of a certain operator.
Prior to the authors of Refs.[1, 2], Bialynicki-Birula and Mycielski t'_ discussed the sum (2) for the pair

(X, P) and proved the optimal relation

U[X,P: ¢] _> 1 + lnTr. (4)

Here we discuss that how much information loses when a particle is in equilibrium with the thermal

reservoir of temperature T(= 1//3) 1'J. The universal temperature correction to the r.h.s, of Eq.(4) is deter-

mined.
For this purpose, it is convenient to employ the framework of thermo field dynamics (TFD) formulated

by Takahashi and Umezawa [sl. This formulation of finite-temperature (T _ 0) quantum theory utilizes the

doubled Hilbert space 7/@7_ I,I the normal operator (A) acting on the objective space 7"[and its corresponding

tildian operator (4) on the fictitious space 7_.

A thermal state [¢, 6;/3) in _ @'_ is not a physical state. The physical probability density associated
with the measurement of the normal operator A is given by the reduced one

P.('_) = S,_ l(_, &[,_, 6;/3) I', (5)

where [c_, &) is the complete eigenbasis of A and +i. With this quantity, we define the information entropy

at T +6 0 as follows:

SA[¢', 6;/3] = - Sc, pR(ol)lnpR(oO. (6)

Now we wish to find the stationary value of the functional

V[X,V: _, 6;/3] = Sx[_, 6;_] + Sv[_, 6;/3], (7)

at given T. In what follows, we propose a variational approach.
We are not concerned with the whole system including the tildian but only with the reduced one.

Therefore, the minimum value of the functional U at given T can be determined completely within the
reduced subsystem. This philosophy should be also respected by the variational operation itself. The
operation proposed here is as follows:

377

PRECEDING PAGE BLANK NOT FILMED



I_,,_;_/-_ I_,_; _) + _1_,_;/3), (s)

where e and _ denote an infinitesimal variation parameter and an arbitrary deformation of the ?_ component,

respectively. Under this operation, the functional U of the normalized thermal state [¢, _;/3) varies as

v[x,v: _, _;/3] -_ v[x,v: ¢, _;/3] + _r + o(d), (9)

f /,
F =-[I dzpR(z)lnpR(z) + I dppa(p)lnpR(p)](¢, _;/3)

d d (10)

f f 6; f f d/31n [PR(P)](¢, ¢;/3[p,l_)(p,_[_, _;/3).

We do not know how to solve generally the equation r = 0 with respect to the unknown state [¢, _;/3).

Here, instead, we examine the thermal coherent state (TCS) t'_, which is the oscillator coherent state at

T _ 0. This is based on the following viewpoints; (i) the information entropy is the measure of uncertainty,

and (ii) at T = 0, the coherent state saturates the Heisenberg uncertainty (AX. AP = ½).
Let us consider a harmonic oscillator with a frequency w in TFD. The thermal vacuum state is generated

from the T = 0 Fock vacuum state 10, 8 / by the Bogoliubov transformation

10(/3))= exp (-iC)I0, ()), -it(�3) = 0(/3)(atfi ! - fa), (11)

cosh 0(/3) = [1 - exp (-/3w)] -1/', (12)

provided that the creation and annihilation operators satisfy [a, a t] = [¢i,a t] = 1, [a, a] = 0, and so on. With
this state, the TCS is defined as foUows:

I=, ,_;/3) = exp [zat (/3) - z'a(/3) + i'at (/3) - ,/a(/3)] 10(/3)), (13)

a(/3)1_,./; /3) = zlz, ./; /3), a(/3)1_,_;/3) = i* l=,i;/3),
where the operators at T ¢ 0 are given by

a(/3) = exp (-iG)a exp (iG) = a cosh 0(/3) - _t sinh 0(/3),

(14)

(15a)

a(/3) -- exp (-iG)fi exp (iG) = a cosh 0(/3) - a t sinh 0(/3), (15b)

and so on. The self-tildian condition 1,1 states z = i.

One can find that the TCS actually gives the desired result r Tcs = 0, and, therefore, Eq.(9) becomes

U[X, P: z, i;/3] _ 1 + In 7r + ln[cosh 20(/3)] + o(e2). (16)

Thus we have the thermal information-entropie uncertainty relationl'_

U[X, P: ¢, _;/3] _> 1 + In 7r + ln[cosh 20(/3)]. (17)
The third term in the r.h.s, determines the minimum loss of measurement information due to the thermal
disturbance effects.

The Heisenberg uncertainty relation at T _ 0 can be derived from gq.(17). To see this, let us tlnd the

maximum value of the concave entropy functional Sx with fixing the variance ((X - IX))') = (AX)L ({')

denotes the expectation value with respect to the normalized probability density pa(=)/(¢, _;/3[¢, _;/3).)
This is just the constrained variational problem characterized by the functional

¢[_, ,_;/3] = Sx[¢, _;/3]- _[<(X - <X>)') - (ZXX)'], (18)

where )_isLagrange's multiplier.Applying again the variationaloperation (8),we can find the maximum
Value

1

SxmaX[¢, 1_;/3] = _ In [2a-e(AX)=].

Therefore we have an inequality

Sx [¢, _;/3] < _ In [2a'e(AX)=].

Repeating a similar discussion for the momentum P, we also get

(19)

(20)
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¢3;/31< in [2t.¢(Ap)']. (21)Sp [_b,

The combination of Eqs.(20) and (21) leads to

2(AP) 2 > exp (--1 -- Int" + 2sp[_, _;/3])

> exp (1 + In t" + 21n {cosh[28(/3)]} - 2Sx[_, _;/3]) (22)

_>
Thus we obtain the thermal Heisenberg uncertainty relation

AX. AP > _Icosh [20(8)I. (23)
-2

We have used Eq.(17) in the second inequality of Eq.(22). This shows that the information-entropic uncer-

tainty relation is stronger than Heisenberg uncertainty relationt'l.

Finally, we comment on squeezing of the thermal uncertainty relation. The thermal squeezed state is
defined by

Iz, i: ,, @;_) = exp [zat (/3) - ra(/3) + i'at(/3) - ia(/3)]

[l{nat2(/3)- I/*a2(/3)+ @*at2(/3)- @_i2(/3)}]10(/3)). (24)X exp
z

Straightforward calculation gives

1(1 + In t" + In {cosh [28(/3)]} + In [cosh (2r) + sinh (2r) cos (_a)]),Sx 7h /3]
Z

(25a)

Sp[z,g':7/,@;/31= _(I + Int"+ In{cosh [28(/3)I} + In[cosh(2r)- sinh(2r)cos(_)]), (25b)

U[X, P: z, i: 7/, @;/3] = 1 + In t" + In {cosh [28(/3)]} + In [1 + sinh2(2r)sin'(_a)] ] , (26)

AX = {_1 cosh [28(/3)](cosh (2r) + sinh (2r) cos (_a))}|

1
AP = {_ cosh [28(/3)](cosh (2r) - sinh (2r) cos (_a))} i ,

AX. AP = I cosh [28(/3)](1 + sinh'(2r)sin_(_)) i ,

(27a)

(27b)

(28)
2

where we have employed the self-tildian condition for a squeeze factor (i.e., 7/ = f/), and r/ ==_rexp (i_a).
These results describe how the thermal disturbance effects in Sx or Sp (AX or AP) can be suppressed by

squeezing with keeping U = Sx + Sp (AX • AP) its minimum value.
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